Solution 8.5
The Hamiltonian H; of the unperturbed system has solutions to the time-independent
Schrodinger equation given by
HU|H> = Enl”)
The time-independent eigenvalues are E, = 7w, and the orthonormal eigenfunctions
are |m). The eigenfunction |m) evolves in time according to
—fw t —io t
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and satisfies
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Attime { = 0 we apply a time-dependent change in potential W(x. f) whose effect is
to create a new Hamiltonian

H= Hy+ Wx 0

and state |y(x, f)) which evolves in time according to
.. 0
1ha—t|1|1(x, ) = (Hg + W(X, 0Ny (x 0))

The wave function |y (X, {)) may be expressed as a sum over the known unperturbed
eigenstates
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where a,(f) are time dependent coefficients. It follows that
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Multiplying both sides by (m and using the orthonormal relationship {min) = 5,

gives



’h (D) = Zahm Wx olme ™

If the perturbatlon 1s harmonic and of the form
Wix, 1) = V(x)cos(wi)
where the spatial part of the potential is given by V(x) then the term
(m W, o)lmye”™
can be written as
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where m,, = ©, - ®, and the matrix elements in the representation of the unperturbed
system described by Hamiltonian Hy are {m| V(x)|n) .
Assuming an 1nitial condition such that a,({<0) = 1 for only one eigenvalue and

a,(t<0) = 0 for m# n, then we may write
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Performing the integration fromtime ¢ = 0 to ' = ¢ gives
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Taking the static limit ® — 0
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where we used 2isin(x) = €" - e ™. Assuming independent scattering channels, the
probability of a transition out of state |1 into any state |m) is the sum

Pn(t) = Z|am(t)|2

m
If there are D(FE) = dN/dE states in the energy interval dE = hdw’, then the sum
can be written as an integral
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To perform the integral we change variables so that x = (0’ - ®,)/2 and then take the
limit £— . This gives
sinZ(IX)

Tty

We now note that dE/ dx = 2h since E = h2x. Hence, the integral can be written

= 3(X)
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so that 1n the limit {— oo
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One may now write the probability of a transition out of state |1) into any state |m) as

hnt
Pt = S Vil DBV = 5 Wl DB

o(x)dx

Recognizing dP,(t)/ dt as the inverse probability lifetime T, of the state |m), we can
write Fermi’s golden rule
l = 2;'-_1n|<m| V(X)|H>|2D(E)8((!)111 - m,)

n

The delta function 1s included to ensure energy conservation. Because we took the
limit ® — 0 the final state energy must be the same as the initial state energy. If we
did not take the limit ® — 0 so that @ # 0 then the final state energy could be th® .

We have shown 1s that Fermi’s golden rule can also be applied to the static limit of
a harmonic perturbation. The significance of the result 1s that we can use time depen-
dent perturbation theory to describe scattering from static potentials such as electrons
scattering elastically from 1onized impurities in a semiconductor.

Solution 8.6

(a) and (b) see text.

(c) Here 1t 1s mmportant to recognize that there are different limiting cases to con-
sider: (1) Perfectly ordered impurities in a periodic lattice, (i1) clusters of impurity scat-
tering sites and (ii1) anticlustering of scattering sites.

Solution 8.8

An electron mass m, and charge e is mitially in the ground state of a one dimensiona
harmonic oscillator characterized by frequency m,. At time 7 = 0 a uniform electri
tield E 1s applied in the x direction for time 7. This means that the time dependent per

turbation potential is W(x. ) = —e|E|X for a time period T. Applying first-order time
dependent pertubation theory we have probability of excitation from the ground stat:
|0) to the first excited state |1)
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we have

gy - CIEL sin(ey1/2)
0u(T) = 2myhm, ((00/2)2

which has value zero when w,t/2 = nm where n = 0,1, 2, ....

Solution 8.9

(a) We start with the first-order time-dependent perturbation theory result for transition
probability
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which assumes that each scattering process is an independent parallel channel and
where o, = (E- E) .
Performing the integration we have
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and using the relation ‘ex - 1‘ = 4smz(x/2) gives
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(b) The equation in (a) can be re-written as
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In the limit {— e we use &(x)= =lim #
nn%oo nX

. Setting x = (0;5+ m)/2 for the

first term on the right hand side and X = (®;- ®)/2 for the second term we have

()

Now, using the fact that d(ax) = é&‘)(x) and letting a = 2A so that
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2hd(h(wy+ m)) = 8( ) , the probability becomes
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Since himy,; = (E;— E;) and the scattering rate is T we have

dt
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in which the first term corresponds to stimulated emission and the second term to

2S(Ef— E +how)+ Z}I_In Wg‘(wﬁflwi) ZS(Ef— E,—ho)

absorption of a quanta of energy /im .



